Impact of Stencil Foil Type on Solder Paste Transfer Efficiency for Laser-cut SMT Stencils (Part 2)


Reading time ( words)

Editor's Note: Read the Part 1 of this article here. 

Results

Transfer Efficiency: Uncoated Metal Stencils

Initially, all seven materials were printed and the uncoated stencil data was analyzed for all area ratios of apertures. The top performers were identified based specifically on transfer efficiency in this analysis. The results are shown in Figure 5. Materials 1 and 2 exhibit better print transfer efficiencies with uncoated apertures than the other materials.

GregSmith-Figure 5.jpg

Figure 5: Transfer efficiency of uncoated stencils for all area ratios and metal types.

Since small area ratio printing is key in product miniaturization, it is important to determine which uncoated material performed the best from 0.3–0.5 area ratios. These area ratios are defined as small area ratio printing because they are below the recommendation in IPC7525B standard of 0.66 [2]. Figure 6 shows the results for 0.3, 0.4, and 0.5 area ratio apertures only.

GregSmith-Figure 6.jpg

Figure 6: Transfer efficiency of uncoated stencils for all metals and 0.3, 0.4, and 0.5 area ratios.

As shown previously, Metal 1 has the highest transfer efficiency results versus the other metals for the 0.3, 0.4, and 0.5 area ratio prints. It also outperformed the second-best material, Material 2, when comparing the means by over 15%. Material 2 shows a 5% improvement over the third-best material when comparing mean transfer efficiencies (Table 3).

Table 3: Mean transfer efficiency of uncoated stencils for all metals and 0.3, 0.4, and 0.5 area ratios.

GregSmith-Table 3.JPG

Another interesting observation is that at 0.5 area ratio, the differences in transfer efficiency results increase significantly versus the 0.3 and 0.4 area ratios with Materials 1, 2, and 4 easily surpassing the 80% transfer efficiency numbers typically required to pass SPI. Using Tukey-Kramer HSD, Material 1 is statistically the best performing material when measuring transfer efficiency on small area ratio apertures (Figure 7), and Material 2 are statistically in the second-best performing group for transfer efficiency with the highest mean transfer efficiency in that group.

GregSmith-Figure 7.jpg

Figure 7: Tukey-Kramer HSD on transfer efficiency for 0.3, 0.4, and 0.5 area ratios.

The final analysis of uncoated stencil foils is to examine larger area ratios to understand if material type affects transfer efficiency. All materials were observed printing at area ratios 0.6, 0.7, and 0.8. The following chart shows the results (Figure 8).

GregSmith-Figure 8.jpg

Figure 8: Transfer efficiency of uncoated stencils for all metals and 0.6, 0.7, and 0.8 area ratios.

Once again, it can be observed that Metals 1 and 2 outperform the others when measuring transfer efficiency for the larger area ratios. Mean transfer efficiency for Metal 1 was greater than the mean of Metal 2 by just under 5%, and the mean transfer efficiency for Metal 2 was 5% better than the next best performing Metal 4. Again, we see a large increase in transfer efficiency when moving from 0.6 and 0.7 area ratio printing to 0.8 area ratio printing.

Share

Print


Suggested Items

Catching up With Darrel Yarbrough of YES

05/07/2019 | Dan Beaulieu, D.B. Management Group
Yarbrough Electronic Sales (YES) is one of the fastest growing contract manufacturers in the Southwest. As people get to know them better, they are becoming the go-to company in their area. In this interview, long-time industry veteran Darrel Yarbrough, owner of YES, provides a background about the company, its capabilities, and his outlook for the industry.

IPC Asia President Phil Carmichael on China Trends

05/01/2019 | Barry Matties, I-Connect007
At the productronica China 2019 show in Shanghai, Barry Matties joined Phil Carmichael, president of IPC Asia, to discuss the continued growth of IPC in Asia, including the increasing emphasis on training. IPC China has grown from hosting two technical conferences five years ago to 32 in the past year. Phil also addresses current trends he’s seeing as well as trade tensions between China and the U.S.

Impact of Stencil Foil Type on Solder Paste Transfer Efficiency for Laser-cut SMT Stencils (Part 1)

04/24/2019 | Greg Smith, BlueRing Stencils
As innovation and demand continue to drive miniaturization in electronics, manufacturers face the constant challenge of assembling smaller and smaller components with repeatable processes and high yields. Stencil printing is the first step in the PWB assembly process, and improvements to the SMT stencil can significantly improve yields, especially for more challenging miniaturized products.



Copyright © 2019 I-Connect007. All rights reserved.