Thermal Management: Why It Should Be High on Your Circuit Protection Agenda

JadeBridges_Electrolube.jpgIn my previous column, I highlighted a few cautionary notes on the pain points associated with thermal management products, particularly the choices that you will be confronted with, such as which material or product type (i.e., pad or paste) is best suited to your application. In this column, I will underline the importance of getting it right, and touch on the consequences if you don’t.

There are a variety of materials and methods to choose from, and they serve different purposes depending upon the physical constraints of the application, component layout and assembly geometry, the environment in which the assembly will be placed, the severity of duty, etc. Then, there are some more specific questions to ask, such as: what thermal conductivity do I require, or how much material will be needed in the interface between component and heat sink to achieve a thermally stable assembly?

Overlook the slightest detail, and you could compromise the performance of your electronic assembly. Clearly, poor thermal management practice will affect the efficiency of dissipating heat away from components and safely out of the assembly. As the temperature of a component increases and reaches its equilibrium temperature, the rate of heat loss per second will equate to the heat produced per second within the component. This temperature may be high enough to significantly shorten the life of the component or even cause the device to fail unless adequate thermal management measures are taken.

Of course, the same applies to a complete circuit or device, which has individual heat producing components within it. In this case, inadequately thermally managed components will almost certainly overheat, which will negatively impact the surrounding components and lead to reduced life expectancy for those components or even their complete failure in service.

Poor reliability arising from thermally induced circuit failures might prove detrimental to brand reputation, but what if the application served a critical role? Applications might include the following:

  • A safety-critical device upon which the safety of personnel working in a hazardous environment might depend
  • A device that simply would not function without proper thermal management procedures in place
  • A device with a defined working temperature range when in use
  • A piece of equipment designed to work in harsh or extreme conditions, which must work reliably regardless of those conditions

To read this entire column, which appeared in the May 2019 issue of Design007 Magazine, click here.

Back

2019

Thermal Management: Why It Should Be High on Your Circuit Protection Agenda

06-06-2019

In my previous column, Jade Bridges highlighted a few cautionary notes on the pain points associated with thermal management products, particularly the choices that you will be confronted with, such as which material or product type (i.e., pad or paste) is best suited to your application. In this column, she will underline the importance of getting it right, and touch on the consequences if you don’t.

View Story

Sensible Design: Five Tips to Further Improve Resin Encapsulant Performance

05-16-2019

There are a number of different factors that influence the protection afforded by potting compounds. The act of encapsulating a component or PCB means that it is surrounded by a layer of resin, which completely seals a component or an entire PCB from the environment in which it operates. When mixed, a two-part resin starts a chemical reaction, which results in the resin becoming fully polymerised to provide a homogenous layer.

View Story

Sensible Design: Important Considerations for Conformal Coating Selection and Performance

04-25-2019

Having covered the subject of conformal coatings in depth over the past few months, now is an appropriate time to review some of the key pointers I have tried to share in my various columns. I present some of my thoughts on the essentials in this five-point guide.

View Story

Sensible Design: Thermal Management Materials—Golden Rules for Product Selection

03-28-2019

Selecting the right type of thermal management method that will suit a particular electronic assembly and its predicted operating conditions is far from easy. There are a number of stages in the selection process that you should consider taking before you decide upon a particular material or material format, whether paste or pad. In this column on achieving effective thermal management of electronic assemblies, I will revisit our trusted question-and-answer format to bring you some essential pointers, beginning with a few cautionary notes on pain points—the occasional pangs of agony you will have to face during the decision-making process.

View Story

Sensible Design: Getting the Best Performance from Encapsulation Resins

03-07-2019

When I last broached the subject of potting and encapsulation resins, I went into some depth on the subject, explaining their chemistries and physical properties, how they behave when being mixed, applied and cured. For this column, I’m going to return to our tried-and-trusted Q&A format to offer four commonly asked questions about resins and their application, together with my responses, which I hope will help you achieve the best outcomes for all your potting and encapsulation jobs. So, setting material choice aside for the moment, let’s start with a key aspect of potting: getting the resin in place.

View Story

Top Five Tips to Protect PCBs from Harsh Environments

01-02-2019

First, think very carefully about the sort of environment your PCB is likely to encounter. It is easy to over-engineer a product so that it will survive the very worst of conditions, but worst conditions may only be fleeting or transient. Therefore, a resin solution with a lower temperature performance specification will often cope. Take temperature extremes as an example; your application may experience occasional temperature spikes of up to 180°C, which you might feel deserves treatment with a special resin. However, such excursions may only be short-lived.

View Story
Back

2018

Sensible Design: Top Tips for Successful Potting

12-19-2018

For effective potting, ideally, the layout of the circuit components should be such that the material can flow smoothly around them without too much turbulence. When possible, it is always good practice to space components in a regular pattern. Irregular spacing—particularly bunching of components in discrete areas of the PCB—causes the formation of eddies in the resin as it is poured, which can lead to voids and air entrapment, which compromise the thermal performance of the resin.

View Story

Do's and Don'ts of Thermal Management Materials

10-18-2018

Selecting a thermal management material that is broadly applicable to a particular electronic assembly and its predicted operating conditions is a good starting point; however, as with many of these things, the devil is very much in the details! Find out the key considerations in choosing your materials.

View Story

Conformal Coatings: An Evolving Science

09-26-2018

One of the trends impacting the electronics assembly industry is the continuing miniaturization of electronics products. This article sheds more light on coating problems posed by this trend, as well as provide key considerations when it comes to coating properties, selections, and applications. Read on to find answers to five of the best coating-related questions that frequently arise during preliminary consultations.

View Story

Thermal Management Materials: Easing the Decision-Making Process

08-02-2018

There are many different types of thermally conductive materials, and choosing between them will be dictated by production requirements and application design, as well as critical performance factors that must be achieved.

View Story

Protecting PCBs from Harsh, Challenging Environments

07-03-2018

Think very carefully about the sort of environment your PCB is likely to encounter. It is easy to over-engineer a product so that it will survive the very worst of conditions, but worst conditions may only be fleeting or transient. Therefore, a resin solution with a lower temperature performance specification will often cope. Take temperature extremes, for example. Your application may experience occasional temperature spikes of up to 180°C, which you might feel deserves treatment with a special resin.

View Story

My Top Coating Queries

04-04-2018

This is my first of many columns for 2018, and I have decided to share some top trending queries that concern many different applications and areas. LEDs are always a hot topic, as are volatile organic compounds (VOCs) and harsh environment concerns.

View Story
Back

2017

Heat Transfer and Thermal Conductivity: The Facts

12-26-2017

In my first two columns, I presented a broad introduction to the subject of thermal management of electronic circuits. This month I’m taking a closer look at thermal interface materials—how they can be applied to achieve efficient heat transfer, and the significance of bulk thermal conductivity in relation to heat transfer and thermal resistance.

View Story

Thermal Management—The Heat is On

09-25-2017

Thermal management materials are designed to prolong equipment life and reduce incidences of failure. They also maintain equipment performance parameters and reduce energy consumption by reducing operating temperatures, and minimising the risk of damage to surrounding components. Indirectly, they maintain brand reputation, as the reliability of the equipment will be very dependent upon the effectiveness of the thermal management technique used.

View Story

Resins: Cutting Through the Technical Jargon

08-21-2017

This month, I’m going to cut through some of the more heavy-going tech-speak, taking a few of my customers’ more frequently asked questions about resins to try to help you refine your selection process. There’s a lot of ground to cover, but for the purposes of this column, let’s concentrate on the PCB’s operating environment, caring for the components that are to be encapsulated, and the special needs of applications like LED lighting and RF systems.

View Story

Casting a Spotlight on Resin Applications

05-03-2017

Over the last few columns, I’ve given readers pointers on virtually every aspect of potting and encapsulation resins, ranging from their formulations and special properties to their applications, benefits and limitations. It’s probably high time, therefore, to take a step back from the do's and don’ts and focus instead on how these resins are bringing very real benefits to practical electronic and electrical engineering applications. A good starting point is to look at the special requirements of an industry that is enjoying explosive growth: LED lighting.

View Story
Back

2016

Resins: Five Essentials to Achieve the Right Cure

12-19-2016

In my previous column, I looked at some of the critical things you need to consider before selecting your resin. Of course, when it comes to the choice and application of resins, there’s a lot of information to take in, and over the following months I hope to distill this and provide some useful tips and design advice that will help you in your quest for reliable circuit protection.

View Story

Why are Resin Properties So Important?

11-21-2016

I started this series of columns on resins by going back to basics, questioning the core rationale for potting and encapsulation with resins, their fundamental chemistries and how each resin type differs one from the other—indeed, how their individual properties can be exploited to maximise performance under a wide range of environmental conditions. I hope readers found this useful. Of course, when it comes to the choice and applications of resins, there’s a great deal more to discuss.

View Story

The Little Guide to Resins

10-17-2016

I would like to start this series of columns by going back to basics, questioning the core rationale for potting and encapsulation with resins, their fundamental chemistries and how each resin type differs one from the other—indeed, how their individual properties can be exploited to maximise performance under a wide range of environmental conditions.

View Story

Conformal Coatings - Beware the Boards that ‘Bare’ All!

09-21-2016

This month, Phil Kinner departs from his usual format of providing five essential facts about conformal coatings. Instead, he provides an account of a customer’s problem—no company names mentioned, of course—that brought into question the adhesion performance of a coating that they had been using successfully for some time.

View Story

When Coatings Go Wrong

08-23-2016

This month, I consider some of the more common, and often very frustrating, problems that may be encountered when coating electronic circuit boards and components. I also discuss some practical solutions. As we all know, nothing in life is straightforward.

View Story

Coatings—Five Essentials for Designers

06-28-2016

In an ideal world, PCB designs would not have an inherent weak point for corrosion; unfortunately, in the real world, they do. When a weak point is revealed, you are better equipped to deal with it. Often the spacing of components, board finish and distance to ground planes can be optimised for corrosion resistance.

View Story
Copyright © 2019 I-Connect007. All rights reserved.