Failures and Reliability in Soldering


Reading time ( words)

The definition of failure is “the lack of success in doing or achieving something, especially in relation to a particular activity.” If the activity is concerning a soldering process, such a failure can have a downstream impact far beyond the actual solder joint. In this regard, it is first necessary to understand what constitutes a good solder joint because appearance is too often deemed a success.

These challenges to solder joint reliability were exemplified when, in July 2006, the RoHS directive came into effect, and the higher thermal demands of lead-free solders forced all manufacturers of soldering irons to focus on improved heat transfer. This requirement was further complicated by the ongoing decrease in component sizes and the fact that many PCBs are becoming more like heat sinks due to multiple layers and other factors. The importance, therefore, is for soldering irons to provide:

  • A fast response (speed)
  • No overshoot (control)

Certainly, most systems today offer good or even excellent performance in thermal energy capability, but difficulties emerge in those systems using conventional ceramic heater technology, especially concerning:

  • Tip-to-ground resistance (difficult to maintain)
  • Tip-to-ground voltage leakage (difficult to maintain)
  • Thermal transfer efficiency
  • The potential for solder splatter (due to temperature overshoot)
  • A requirement for calibration of the thermocouple

In this article, we will explore the considerations necessary to achieve good solder joints and offer some practical rules for good solder joints and how to achieve them reliably. We will also discuss other thermal energy factors to keep in mind.

Thermaltronics-Fig1-Jul2019.jpg

Figure 1: Components of a good solder joint and their relative placement during the creation of a solder joint.

The considerations necessary to achieve good solder joints are (Figure 1):

  • The formation of an intermetallic layer
  • Solder joint structure
  • Joint temperature (military standard)
  • Tip temperature vs. joint temperature
  • Maintenance of the soldering profile (similar to that found in a reflow oven)

When copper comes in contact with molten solder, it forms two distinct intermetallics between the copper and the tin contained in the solder (Figure 2):

  • Layer of “e-phase” (Cu3Sn) next to copper
  • Layer of “h-phase” (Cu6Sn5) a thicker layer above

Tin is depleted by the formation of intermetallics, so in tin-lead solders, there will be a resultant lead-rich region.

Share

Print


Suggested Items

SMTAI 2019: Chris Bastecki on Low-temperature Solder Challenges and Products

10/14/2019 | Real Time with...SMTAI
Chris Bastecki, director of global PCB assembly at Indium Corporation, discussed challenges of low-temperature solder and the company's new product, Durafuse LT, which provides novel properties and reliability.

Real Time with... SMTAI 2019 Video Interviews

10/09/2019 | Real Time with...SMTAI
The SMTA International Conference and Exhibition 2019, which took place September 22–26, 2019, at the Donald E. Stephens Convention Center in Rosemont, Illinois, concluded successfully. For those of you who were not able to make it to the show, catch our video interviews with the movers and shakers of the electronics industry. We've updated our video presentation for a better experience for our users, so check it out!

SMTAI 2019: Happy Holden’s On-the-Scene Report

10/03/2019 | Happy Holden, I-Connect007
Last week concluded the 2019 SMTAI conference in Rosemont, Illinois. Overall, I think the show was successful and covered all aspects of SMT processes.



Copyright © 2019 I-Connect007. All rights reserved.